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Frobenius Liftings

(k, F ): perfect field of characteristic p > 0 with Frobenius F .
(Wn, Fn): n-truncated Witt vectors over k with Frobenius lift Fn.
(X , F ): scheme over k with Frobenius F .

Definition
A Frobenius lifting of (X , F ) over Wn is a pair (Xn, Fn) where Xn is a flat
Wn-scheme and Fn : Xn → Xn is a lift of the Frobenius morphism
compatible with Fn on Wn such that the base change to k recovers (X , F ).

▶ If X is smooth projective variety, the existence of Frobenius liftings
over W2 implies Bott vanishing:

H j(X , Ωi
X/k ⊗OX L) = 0 for j > 0 and L ample.
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Classical Obstruction Theory

Theorem (Nori–Srinivas)1

X : smooth variety over k.
(Xn, Fn): Frobenius lifting of X over Wn.
The obstruction to Frobenius liftability of (Xn, Fn) to Wn+1 lies in

ob(Xn, Fn) ∈ H1(X , TX ⊗OX B1
X ) ∼= Ext1

X (Ω1
X/k , B1

X ).

If it vanishes, the isomorphism classes of such Frobenius liftings is a torsor
under H0(X , TX ⊗OX B1

X ).

▶ TX := HomX (Ω1
X/k ,OX ) and B1

X := coker(OX
F−→ F∗OX ).

▶ This proof relies on the Frobenius liftability of smooth affine
varieties and does not generalize to singular schemes.

1Compositio Mathematica, 64.2 (1987), 191–212.
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Derived Deformation Functors

Definition (Grothendieck2–Schlessinger3–Lurie4)
CAlgan,art

W //k : the ∞-category of animated Artinian local W (k)-algebras.
A formal moduli problem is a functor

F : CAlgan,art
W //k → Ani

satisfying certain properties (see the next slide).

▶ Brantner–Taelman5: The functor DefX which classifies liftings of a
(derived) k-scheme X is a formal moduli problem.

2Séminaire Bourbaki, Vol.5. Soc. Math. France, Paris, 1960, Exp. No. 195, 369–390
3Transactions of the American Mathematical Society, 130.2 (1968), 208–222
4Spectral Algebraic Geometry
5arXiv:2407.09256
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Required Properties of Formal Moduli Problems

A formal moduli problem F is defined by the following properties:
1. The anima F (k) is contractible.
2. For B → A← C in CAlgan,art

W //k , the canonical map

F (B ×A C)→ F (B)×F (A) F (C)

in Ani is an equivalence if the maps π0(B)→ π0(A) and
π0(C)→ π0(A) are surjective.

We can take the following pullback diagram in CAlgan,art
W //k :

Wn+1 Wn

k k ⊕ (k[1])

mod pn

where k ⊕ (k[1]) is the trivial square zero extension of k by k[1] ∈ D(k).
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Formal Moduli Problem of Schemes

Apply the formal moduli problem DefX to the pullback square above and
compute the value DefX (k ⊕ (k[1])):

Theorem (Brantner–Taelman)
▶ DefX (k ⊕ (k[1])) ≃ MapX (LX/k ,OX [2]).
▶ Xn: a lifting over Wn of a (derived) k-scheme X . Then

DefX (Wn+1) ≃ DefX (Wn)×DefX (k⊕(k[1])) {∗}. In particular, we have
a fiber sequence of sets

π0(DefX (Wn+1))→ π0(DefX (Wn))→ Ext2
X (LX/k ,OX )

where the fiber is taken over the zero element in Ext2
X (LX/k ,OX ); the

image of Xn in the last term is an obstruction class.

This provides a conceptual framework for studying liftings of schemes. We
want to construct a similar one for Frobenius liftings.
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Categorical Setting for Frobenius Liftings

Definition
The ∞-category End(CAlgan)(W ,F )//(k,F ) is defined as follows:
▶ Objects: endomorphisms φ : A→ A of animated rings A equipped

with a morphism W → A→ k such that φ is compatible with the
Frobenius lift F : W →W and the Frobenius map F : k → k.

▶ Morphisms: natural transformations between such endomorphisms.
We can define the Artinian objects in this ∞-category and denote the full
∞-subcategory spanned by them as End(CAlgan)art

(W ,F )//(k,F ).

▶ For example, the Frobenius lift Fn : Wn →Wn on the n-truncated
Witt ring Wn belongs to this ∞-category.

▶ All limits and colimits in this ∞-category are computed termwise.
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Main Theorem: Formal Moduli Problem

Set B1
X := cofib(OX

F−→ F∗OX ) in D(X ).

Theorem (I.)
There exists a formal moduli problem of Frobenius liftings of X :

Def(X ,F ) : End(CAlgan)art
(W ,F )//(k,F ) → Ani .

▶ Def(X ,F )(k ⊕ k[1], F ⊕ (F [1])) ≃ MapX (LX/k , B1
X ).

▶ For modpn-map, we have a fiber sequence of sets

π0(Def(X ,F )(Wn+1, Fn+1))→ π0(Def(X ,F )(Wn, Fn))
→ Ext1

X (LX/k , B1
X )

where the fiber is taken over the zero element in Ext1
X (LX/k , B1

X ).
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Main Theorem: Obstruction Theory

Corollary (I.)
(Xn, Fn): Frobenius lifting of X over Wn.
The obstruction to Frobenius liftability of (Xn, Fn) to Wn+1 lies in

ob(Xn, Fn) ∈ Ext1
X (LX/k , B1

X ).

If it vanishes, the isomorphism classes of such Frobenius liftings is a torsor
under the hom-set HomX (LX/k , B1

X ).

Remark
▶ This theory works for any derived scheme X over a (not necessarily

perfect) field k of characteristic p > 0.
▶ This is self-contained and does not depend on the classical

obstruction theory such as Nori–Srinivas and Illusie (in spite of using
cotangent complexes).
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Corollary and Future Works

Examples
▶ Smooth affine k-schemes
▶ Perfect k-schemes
▶ F -split smooth k-schemes with trivial cotangent bundle

(Nori–Srinivas)
admit Frobenius liftings over Wn for all n.
Any F -split derived scheme has a lifting over W2.

▶ Reprove other previous results on Frobenius liftings using this
framework more conceptually.

▶ Study Frobenius liftability of singular and derived schemes.
▶ Compatibility of the Nori–Srinivas obstruction theory in the smooth

case. Is the obstruction ob(X , F ) ∈ ExtX (Ω1
X/k , B1

X ) of Frobenius
liftability over W2 the same as the Cartier exact sequence
0→ B1

X → Z 1
X

C−→ Ω1
X/k → 0?
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