On the derived deformation functor of Frobenius liftings

Ryo ISHIZUKA (Institute of Science Tokyo)

2025 Summer Research Institute in Algebraic Geometry

July, 2025

(k, F): perfect field of characteristic p > 0 with Frobenius F. (W_n, F_n) : *n*-truncated Witt vectors over k with Frobenius lift F_n . (X, F): scheme over k with Frobenius F.

Definition

A **Frobenius lifting** of (X, F) over W_n is a pair (X_n, F_n) where X_n is a flat W_n -scheme and $F_n : X_n \to X_n$ is a lift of the Frobenius morphism compatible with F_n on W_n such that the base change to k recovers (X, F).

If X is smooth projective variety, the existence of Frobenius liftings over W₂ implies Bott vanishing:

$$H^{j}(X, \Omega^{i}_{X/k} \otimes_{\mathcal{O}_{X}} L) = 0$$
 for $j > 0$ and L ample.

Theorem (Nori–Srinivas)¹

X: **smooth** variety over k.

 (X_n, F_n) : Frobenius lifting of X over W_n .

The obstruction to Frobenius liftability of (X_n, F_n) to W_{n+1} lies in

$$\mathsf{ob}(X_n, \mathcal{F}_n) \in H^1(X, \mathcal{T}_X \otimes_{\mathcal{O}_X} B^1_X) \cong \mathsf{Ext}^1_X(\Omega^1_{X/k}, B^1_X).$$

If it vanishes, the isomorphism classes of such Frobenius liftings is a torsor under $H^0(X, T_X \otimes_{\mathcal{O}_X} B^1_X)$.

- $T_X := \mathcal{H}om_X(\Omega^1_{X/k}, \mathcal{O}_X)$ and $B^1_X := \operatorname{coker}(\mathcal{O}_X \xrightarrow{F} F_*\mathcal{O}_X).$
- This proof relies on the Frobenius liftability of smooth affine varieties and does not generalize to singular schemes.

¹Compositio Mathematica, 64.2 (1987), 191–212.

Definition (Grothendieck²–Schlessinger³–Lurie⁴)

 $\operatorname{CAlg}_{W//k}^{an,\operatorname{art}}$: the ∞ -category of animated Artinian local W(k)-algebras. A **formal moduli problem** is a functor

$$F: \operatorname{CAlg}_{W//k}^{\operatorname{an,art}} \to \operatorname{Ani}$$

satisfying certain properties (see the next slide).

Brantner–Taelman⁵: The functor Def_X which classifies liftings of a (derived) k-scheme X is a formal moduli problem.

²Séminaire Bourbaki, Vol.5. Soc. Math. France, Paris, 1960, Exp. No. 195, 369–390
 ³Transactions of the American Mathematical Society, 130.2 (1968), 208–222
 ⁴Spectral Algebraic Geometry
 ⁵arXiv:2407.09256

R. Ishizuka (SciTokyo)

4 / 10

Required Properties of Formal Moduli Problems

A formal moduli problem F is defined by the following properties:

- 1. The anima F(k) is contractible.
- 2. For $B \to A \leftarrow C$ in $CAlg_{W//k}^{an,art}$, the canonical map

$$F(B \times_A C) \to F(B) \times_{F(A)} F(C)$$

in Ani is an equivalence if the maps $\pi_0(B) \to \pi_0(A)$ and $\pi_0(C) \to \pi_0(A)$ are surjective.

We can take the following pullback diagram in $CAlg_{W//k}^{an,art}$:

$$egin{array}{cccc} W_{n+1} & \stackrel{\mod p^n}{\longrightarrow} & W_n \ & & \downarrow \ & & \downarrow \ & k & \longrightarrow & k \oplus (k[1]) \end{array}$$

where $k \oplus (k[1])$ is the trivial square zero extension of k by $k[1] \in \mathcal{D}(k)$.

Formal Moduli Problem of Schemes

Apply the formal moduli problem Def_X to the pullback square above and compute the value $Def_X(k \oplus (k[1]))$:

Theorem (Brantner–Taelman)

- ▶ $\mathsf{Def}_X(k \oplus (k[1])) \simeq \mathsf{Map}_X(L_{X/k}, \mathcal{O}_X[2]).$
- X_n: a lifting over W_n of a (derived) k-scheme X. Then Def_X(W_{n+1}) ≃ Def_X(W_n) ×_{Def_X(k⊕(k[1]))} {*}. In particular, we have a fiber sequence of sets

$$\pi_0(\mathsf{Def}_X(W_{n+1})) \to \pi_0(\mathsf{Def}_X(W_n)) \to \mathsf{Ext}^2_X(L_{X/k}, \mathcal{O}_X)$$

where the fiber is taken over the zero element in $\text{Ext}_X^2(L_{X/k}, \mathcal{O}_X)$; the image of X_n in the last term is an obstruction class.

This provides a conceptual framework for studying liftings of schemes. We want to construct a similar one for Frobenius liftings.

Definition

The ∞ -category End(CAlg^{an})_{(W,F)//(k,F)} is defined as follows:

- Objects: endomorphisms φ: A → A of animated rings A equipped with a morphism W → A → k such that φ is compatible with the Frobenius lift F: W → W and the Frobenius map F: k → k.
- ▶ Morphisms: natural transformations between such endomorphisms. We can define the Artinian objects in this ∞-category and denote the full ∞-subcategory spanned by them as $End(CAlg^{an})^{art}_{(W,F)//(k,F)}$.
 - For example, the Frobenius lift F_n: W_n → W_n on the *n*-truncated Witt ring W_n belongs to this ∞-category.
 - All limits and colimits in this ∞ -category are computed termwise.

Main Theorem: Formal Moduli Problem

Set
$$B^1_X := \operatorname{cofib}(\mathcal{O}_X \xrightarrow{F} F_*\mathcal{O}_X)$$
 in $\mathcal{D}(X)$.

Theorem (I.)

There exists a formal moduli problem of Frobenius liftings of X:

$$\mathsf{Def}_{(X,F)}\colon \mathsf{End}(\mathsf{CAlg}^{an})^{\mathsf{art}}_{(W,F)//(k,F)} o \mathsf{Ani}$$
 .

- ▶ $\mathsf{Def}_{(X,F)}(k \oplus k[1], F \oplus (F[1])) \simeq \mathsf{Map}_X(L_{X/k}, B^1_X).$
- For mod pⁿ-map, we have a fiber sequence of sets

$$\pi_0(\mathsf{Def}_{(X,F)}(W_{n+1},F_{n+1})) o \pi_0(\mathsf{Def}_{(X,F)}(W_n,F_n))
onumber \ o \mathsf{Ext}^1_X(L_{X/k},B^1_X)$$

where the fiber is taken over the zero element in $\operatorname{Ext}^1_X(L_{X/k}, B^1_X)$.

8 / 10

Corollary (I.)

 (X_n, F_n) : Frobenius lifting of X over W_n . The obstruction to Frobenius liftability of (X_n, F_n) to W_{n+1} lies in

$$ob(X_n, F_n) \in Ext^1_X(L_{X/k}, B^1_X).$$

If it vanishes, the isomorphism classes of such Frobenius liftings is a torsor under the hom-set $\text{Hom}_X(L_{X/k}, B^1_X)$.

Remark

- This theory works for any derived scheme X over a (not necessarily perfect) field k of characteristic p > 0.
- This is self-contained and does not depend on the classical obstruction theory such as Nori–Srinivas and Illusie (in spite of using cotangent complexes).

Corollary and Future Works

Examples

- Smooth affine k-schemes
- Perfect k-schemes
- F-split smooth k-schemes with trivial cotangent bundle (Nori–Srinivas)

admit Frobenius liftings over W_n for all n.

Any *F*-split derived scheme has a lifting over W_2 .

- Reprove other previous results on Frobenius liftings using this framework more conceptually.
- Study Frobenius liftability of singular and derived schemes.
- Compatibility of the Nori–Srinivas obstruction theory in the smooth case. Is the obstruction ob(X, F) ∈ Ext_X(Ω¹_{X/k}, B¹_X) of Frobenius liftability over W₂ the same as the Cartier exact sequence 0 → B¹_X → Z¹_X ⊂ Ω¹_{X/k} → 0?