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Introduction

The paper [BIM] explores some homological properties of perfect(oid) algebras over commutative
noetherian rings. One of results is Kunz’s theorem in mixed characteristic case.

Recall that Kunz’s theorem asserts that a noetherian Fp-algebra R is regular if and only if the Frobe-
nius map R→ R is flat. One can reformulate this result as the following assertion: such an R is regular
exactly when there exists a faithfully flat map R → A with A perfect (Proposition 1.6). Our p-adic
generalization is the following:

Theorem A (see Theorem 1.10). Let R be a noetherian ring such that p lies in the Jacobson radical of
R (for example, R could be p-adically complete). Then R is regular if and only if there exists a faithfully
flat map R→ A with A perfectoid.

§1 is devoted to Kunz’s theorem in both positive characteristic case and mixed characteristic case.
In §2, we introduce the results about finiteness of flat dimension. In fact, the original proof of

Theorem A in [BIM] is based on results in this section.
In §3, we focus on two algebras: the absolute integral closure R+ and the perfect closure Rperf .

In addition, we will introduce the notions of proregular sequences and weakly proregular sequences. It
will turn out that systems of parameters of R are weakly proregular on R+ and on Rperf under some
conditions (Proposition 3.9). Because of this, we obtain a criterion of regulaness using the vanishing of

TorRi (R
+, k) or TorRi (Rperf , k) (Theorem 3.11)
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1. Kunz’s theorem

In this section we give a quick but reasonably detailed overview of the proof of Kunz’s theorem in
mixed characteristic case.

First in §1.1 we recall classical Kunz’s theorem and some applications. This subsection ends with
reformulation of Kunz’s theorem

After understanding the proof of reformulation of Kunz’s theorem in positive characteristic, we proceed
in §1.2 to generalizing to mixed characteristic, using the notion of perfectoid rings.

1.1. Positive characteristic. Throughout this subsection, let R denote a noetherian Fp-algebra.
Let us first briefly recall Kunz’s theorem.

Theorem 1.1 ([Kunz69, Theorem 2.1, Corollary 2.7]). The following conditions are equivalent.
(1) R is regular.
(2) The absolute Frobenius ϕ : R→ R is flat.

Sketch. We may assume that R is complete local (here we use the fact that a local homomorphism

A→ B of noetherian local rings is (faithfully) flat if and only if so is Â→ B̂, which is a consequence of
local criterion of flatness). Let k := R/mR.

(1)⇒ (2): By Cohen’s structure theorem, we may assume that R = k[[X1, . . . , Xn]], where n = dimR.
Then the canonical injection Rp ↪→ R can be decomposed as

Rp = kp[[Xp
1 , . . . , X

p
n]] ↪→ k[[Xp

1 , . . . , X
p
n]] ↪→ k[[X1, . . . , Xn]] = R.

Since k[[X1, . . . , Xn]] is free over k[[Xp
1 , . . . , X

p
n]] on the basis {Xα1

1 · · ·Xαn
n | 0 ≤ αi ≤ p− 1} and since

the flatness of kp ↪→ k implies that of kp[[Xp
1 , . . . , X

p
n]] ↪→ k[[Xp

1 , . . . , X
p
n]], it follows that R

p ↪→ R is flat.
(2) ⇒ (1): Let x1, . . . , xr be a minimal basis of mR. Then by Cohen’s structure theorem, we have a

surjection
S := k[[X1, . . . , Xr]] ↠ R, Xi 7→ xi.

Let a be the kernel. Then, for each p-power q = pν , the surjection induces the short exact sequence

0 (a+mq
S)/m

q
S S/mq

S R/mq
R 0.

Using the notion of independendence in the sense of Lech, we can prove that lS(S/m
q
S) = qr =

lR(R/m
q
R) = lS(R/m

q
R), so that (a + mq

S)/m
q
S = 0, i.e., a ⊂ mq

S . Since this holds true for any p-power
q = pν , one has

a ⊆
⋂
ν>0

mq
S = (0).

Thus R ∼= S = k[[X1, . . . , Xr]], which is a regular local ring. □
Let us mention applications of Kunz’s theorem.
The fact that a localization of a regular local ring is again regular is proved by (Auslander-Buchbaum-

)Serre’s theorem for regular local rings. But in positive characteristic case, this fact is an immediate
consequence of Kunz’s theorem:

Corollary 1.2 ([Kunz69, Corollary 2.2]). If R is a regular local ring, then so is Rp of R for each
p ∈ SpecR.

In addition, Kunz’s theorem yields the following result about excellence of Fp-algebras.

Theorem 1.3 ([Kunz76, Theorem 2.5]). Let R be a noetherian Fp-algebra. If the Frobenius endomor-
phism ϕ : R→ R is finite, then R is excellent.

The following corollay leads to our reformulation of Kunz’s theorem.

Corollary 1.4. If R is a regular Fp-algebra, then R→ Rperf is faithfully flat.

Proof. It suffices to show that each ϕn : R→ R is faithfully flat (cf. [SP, Tag 090N]). Since R is a regular
Fp-algebra, ϕ (hence ϕn) is flat by Kunz’s theorem. Moreover, given a maximal ideal m ⊂ R, we have

ϕn(m)R ⊂ mpn

R ⊂ m 6= R. Thus we conclude that ϕn : R→ R is faithfully flat. □
We will show that the converse holds, and at the same time reformulate Kunz’s theorem.
Let us start with the following lemma.

Lemma 1.5 (cf. [BIM, Lemma 3.2]). Let A be a perfect Fp-algebra, and x = x1, . . . , xn a sequence of
elements in A.

3

https://stacks.math.columbia.edu/tag/090N


(1)
√
xA = (x

1/p∞

1 , . . . , x
1/p∞

n ).

(2) fdA(A/
√
xA) ≤ n.

Proof. (1) Straightforward.
(2) We proceed by induction on n.
n = 1 Relabel x = x1 for visual convenience. It suffices to check that the ideal I := (x1/p

∞
) ⊂ S is

flat as an S-module (then 0→ I → S → S/I → 0 is a flat resolution of S/I). Observe that the morphism
of direct systems1

S S S · · ·

(x) (x1/p) (x1/p
2

) · · ·

x
1− 1

p

x

x
1
p
− 1

p2

x1/p

x
1
p2

− 1
p3

x1/p2

⊂ ⊂ ⊂
induces the morphism of direct limits

ψ : lim−→
(
S

x
1− 1

p

−−−→ S
x

1
p
− 1

p2

−−−−−→ S → · · ·
)
→ (x1/p

∞
) = I.

The surjectivity is clear, and we can check the injectivity using the fact that B is reduced.
n > 1 Set A′ := A/

√
x1A), and let x′ be the image of the sequence x2, . . . , xn in A′. Then A′ is also

perfect, and thus by the induction hypothesis, we obtain

fdS(S/J) ≤ fdS(S/J) + 1 ≤ (n− 1) + 1 = n,

(see [AF, 4.2 Corollary (b) (F)] or [SP, Tag 066K], for the first inequality). □
Now one can reformulate Kunz’s theorem as the following assertion:

Proposition 1.6. Let R be a noetherian Fp-algebra. Then the following conditions are equivalent.
(1) R is regular.
(2) R→ Rperf is faithfully flat.
(3) There exists a faithfully flat ring homomorphism R→ A with A perfect.

Proof. (1) =⇒ (2): Corollary 1.4.
(2) =⇒ (3): Trivial.
(3) =⇒ (1): Pick p ∈ SpecR. Since R → A is faithfully flat, there exists P ∈ SpecA such that

P ∩ R = p. Then the induced local homomorphism Rp → AP is (faithfully) flat. Thus we may assume
that R,A are local and that the flat ring homomorphism R → A is local. Set k := R/mR. Let
x = x1, . . . , xn be a s.o.p. of R (n = dimR). Then lemma 1.9 yields

(1.1) fdA(A/
√
xA) ≤ n.

Hence, if i > n,

0 = TorAi (k ⊗R A,A/
√
mRA)

flat
= TorRi (k,A/

√
mRA)

= TorRi (k, k)
⊕I

where A/
√
xA ∼= k⊕I (since A/

√
xA = A/

√√
xRA = A/

√
mA is a k-vector space). Since R → A

is a local homomorphism, it follows that I 6= ∅, so that TorRi (k, k) = 0 for i > n. This means that
gl. dimR = pdR k ≤ n <∞. □

Note that the essential part of the proof the finiteness of flat dimension (1.1).

1The notation x
1
pe

− 1
pe+1 makes sense because 1

pe
− 1

pe+1 = p−1
pe+1 .
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1.2. Mixed characteristic. We insert here a brief review of the definition and some properties of
perfectoid rings (cf. [BMS1]).

Definition 1.7 ([BIM, Definition 3.5]). We say that a ring A is perfectoid if it satisfies the following
conditions.

(1) A is p-adically complete.
(2) The Fp-algebra A/pA is semiperfect.

(3) The kernel of Fontaine’s map θ : W (A♭)→ A is principal.
(4) There exist π ∈ A and u ∈ A× such that πp = pu.

For the equivalence of this definition and other characterizations, see [BMS1, Lemma 3.9, Proposition
3.10]. If A is perfectoid, then the following hold:

• Fontaine’s map θ : W (A♭)→ A is surjective (see [BMS1, Lemma 3.9]).
• An element ξ = (ξ0, ξ1, . . .) ∈ ker θ generates ker θ if and only if ξ is distinguished, i.e., ξ1 ∈ (A♭)×

(see [BMS1, Remark 3.11]).
Note also that an arbitrary product of perfectoid rings is perfectoid ([BIM, Example 3.8 (8)]). Indeed,
the condition (3) in Definition 1.7 is satisfied because the functor A 7→W (A♭) commutes with products.
The other conditions are obvious.

We now turn to generalizing Kunz’s theorem to mixed characteristic. The most important features of
perfectoid rings are the following.

Lemma 1.8 ([BIM, Lemma 3.7]). Let A be a perfectoid ring.
(1) The Fp-algebra A := A/

√
pA is perfect.

(2) The ideal
√
pA ⊂ A is a flat A-module.

Proof. (1) We first show that the element π appearing in Definition 1.7 can be assumed to admit a
compatible system of p-power roots {π1/pn}n≥1. Let ξ = (ξ0, ξ1, . . .) ∈ W (A♭) be a generator of ker θ =
(ξ), and set π ∈ A to be the image of [ξ0]. Then π satisfies the condition (4) in Definition 1.7 (here
we use that ξ is distinguished) and admits a compatible system of p-power roots, namely the images of

[ξ
1/pn+1

0 ].

Since (p) = (πp), one has
√
pA = (p1/p

∞
) = (π1/p∞

), and so it suffices to show that A/(π1/p∞
) is

perfect. The isomorphism W (A♭)/(ξ)
∼−→ A and the definition of our π yield

A/(π1/p∞
) ∼=W (A♭)/(ξ, [ξ

1/p∞

0 ]) ∼=
W (A♭)/(p)

(ξ, [ξ
1/p∞

0 ])/(p)
∼= A♭/

(
ξ
1/p∞

0

)
Lemma 1.5 (1)

= A♭/
√

(ξ0).

This ring is perfect since A♭ is perfect.
(2) We prove only in the case where A is p-torsion free. (The general case is difficult.) We check that

fdA(A) ≤ 1; this is equivalent to showing that
√
pA is flat. Since A is p-torsion free and πp = pu for

some u ∈ A×, we can see that each π1/pe

is a non-zero-divisor of A. Thus each $1/pe

A is isomorphic to
A, hence is free. The directed union (π1/p∞

) is also flat. □

By this lemma, we deduce the desired finiteness of flat dimension. For the sake of the later applications,
we give this result in more general setting. We say that a ring A is (positive characteristic p and) perfect
modulo a flat ideal if there exists an ideal I ⊂ A containing p such that A/I is perfect. Lemma 1.8 shows
that any perfectoid is perfect modulo a flat ideal.

Lemma 1.9. Let A be a ring that is perfect modulo a flat ideal I, and set A := A/I. If J ⊂ A is an ideal

containing I such that JA =
√
xA for some sequence x = x1, . . . , xn in A. Then fdA(A/J) ≤ n+ 1.

Proof. fdA(A/J) ≤ fdA(A/JA) + fdAA
Lemma 1.8
≤ n+ 1. □

Now we can prove a mixed characteristic generalization of Kunz’s theorem.

Theorem 1.10 ([BIM, Theorem 4.7]). Let R be a noetherian ring with p ∈ radR. Then the following
conditions are equivalent.

(1) R is regular.
(2) There exists a faithfully flat ring homomorphism R→ A with A perfectoid.

Proof. (2) ⇒ (1): Because of lemma 1.8 and lemma 1.9, the argument similar to that in Proposition 1.6
works.
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(1) ⇒ (2): Assume that R is regular with p ∈ radR. We must construct a faithfully flat ring
homomorphism R→ A with perfectoid.

(Step 1): Reduction to the case where R is complete local. Assume that, for each m ∈ MaxR, we

obtain a faithfully flat ring homomorphism R̂m → A(m) with A(m) perfectoid. Consider the resulting
ring homomorphism

R→
∏

m∈MaxR

R̂m →
∏

m∈MaxR

A(m).

As R is noetherian, an arbitrary product of flat R-modules is flat ([岩永-佐藤, 命題 8-2-7]), so the above
map is flat. Moreover, it is also faithfully flat: the induced map Spec

(∏
m∈MaxRA(m)

)
→ SpecR is

open (by flatness), and thus its image is generization-closed. Moreover, the image contains all closed
points by construction. As a product of perfectoid rings is perfectoid, we have constructed the desired
covers.

(Step 2): Reduction to the case where R is a domain. Since R is regular, we can write R =
∏

i∈I Ri

with Ri regular domain and I finite ([BH, Corollary 2.2.20]). If we obtain a faithfully flat ring homo-
morphism Ri → Ai with Ai perfectoid, for each i ∈ I, then the product R =

∏
i∈I Ri →

∏
i∈I Ai =: A

is a faithfully flat ring homomorphism with A perfectoid (faithfully flatness follows since I is finite).
(Step 3): Finish. Since we have seen the positive characteristic case in Proposition 1.6, it remains

the case of mixed characteristic (0, p) (we note that p ∈ radR). By [BouAC2, IX, App., Theorem 1,
Corolally], there exists a gonflement R → S such that the residue field of S is an algebraically closure
of R/mR. Then R → S is faithfully flat ([BouAC2, IX, App., Proposition 2, b)]) and S is also regular
([BouAC2, IX, App., Proposition 2, Corollary)]). Thus we may replace R by S, hence may assume that
R/mR is perfect. Then, by Cohen’s structure theorem,

R =

{
W (k)[[X2, . . . , Xd]] if R is unramified,

W (k)[[X1, . . . , Xd]]/(p− f) if R is ramified.

where f ∈ (x1, . . . , xd)
2 \ (p). We take

A :=


(
W (k)[p1/p

∞
][[X

1/p∞

2 , . . . , X
1/p∞

d ]]
)∧

p
if R is unramified,(

W (k)[[X
1/p∞

1 , . . . , X
1/p∞

d ]]/(p− f)
)∧

p
if R is ramified.

Indeed, A is perfectoid and R→ A is faithfully flat:
(perfectoid): The unramified case follows as in the case k = Fp (hence W (k) = Zp). The ramified

case is due to Shimomoto [Shi16, Proposition 4.9].
(faithfully flat): Observe that

S :=

{
W (k)[p1/p

∞
][[X

1/p∞

2 , . . . , X
1/p∞

d ]] =
⋃

n>0W (k)[p1/p
n

][[X
1/pn

2 , . . . , X
1/pn

d ]],

W (k)[[X
1/p∞

1 , . . . , X
1/p∞

d ]]/(p− f) =
⋃

n>0W (k)[[X
1/pn

1 , . . . , X
1/pn

d ]]/(p− f).

In the ramified case, R → A is faithfully flat by [Bha18, Proposition 5.12] and the fact that R/pR →
S/pS

∼−→ A/pA is faithfully flat. □
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2. Criteria for finite flat dimension

2.1. Local cohomology. Local cohomology is an important tool in homological algebra because of the
Grothendieck (non-)vanishing results related to the depth and dimension of a finitely generated module
over a Noetherian local ring (cf. [BH, Theorem 3.5.7]). Let us briefly the definition of local cohomology.

Let R be a ring, and a ⊂ R an ideal. For an R-module M , the a-torsion submodule of M is defined
by

Γa(M)
def
=

⋃
q≥0

0 :M aq ∼= lim−→
k

HomR(R/a
q,M).

Then Γa(−) defines a left exact functor from the category ModR of R-modules into itself. The right
derived functors of Γa(−) is called the local cohomology functors, denoted by Hi

a(−).

Remark 2.1. On the other hand, the completion functor Λa(−) in commutative algebra, which is given
by

Λa(M)
def
= lim←−

q

(R/aq ⊗R M),

is formally dual to the functor Γa(−). However, it is neither left nor right exact in general. In order to
study the left derived functors LiΛ

a, Greenless and May [GM92] introduced the notion of a “proregular
sequence,” which we will introduce in 3.1.

For the sake of our applications in this section, we just remark here the following result:

Theorem 2.2. Let R be a noetherian ring, and M an R-module. Let x = x1, . . . , xn be a sequence of
elements in R, and set a := (x). Then

Hi
a(M) ∼= Ȟi(x;M) := Hi(Č(x)⊗R M)

For the proof, see [BH, Theorem 3.5.6]. Note that this implies the following result, which

Corollary 2.3. Let (R,m, k) be a noetherian local ring, and M an R-module. Then

s(M) := sup{t | Ht
m(M̌)} 6= 0} ≤ dimR.

where M̌ := HomR(M,ER(k)).

Proof. If x is a system of parameters of R, then Či(x) = 0 for i > dimR, and thus Hi
m(M)

Theorem 2.2∼=
Hi(Č(x)⊗R M) = 0 for i > dimR, which confirms the assertion. □

In addition, we need the following fact, which concerns a rigidity.

Fact 2.4 ([CIM19, Proposition 3.3]). Let (R,m, k) be a noetherian local ring, and M an R-module. Set

s(M) be as in Theorem 2.2. If TorRi (M,k) = 0 for some i ≥ s(M), then TorRj (M,k) = 0 for all j ≥ i.

2.2. Results in [BIM].

Theorem 2.5 ([BIM, Theorem 2.1]). Let (R,m, k) be a noetherian local ring, and S an R-algebra
containing an ideal J with mS ⊆ J and fdS(S/J) < ∞. Let d ≥ fdS(S/J) be an integer, and U an

S-module with JU 6= U . Let M be an R-module, and s ≥ 0 an integer. If TorRj (U,M) = 0 for j ≥ s,

then TorRj (k,M) = 0 for j ≥ s+ d.

Theorem 2.6 ([BIM, Theorem 4.1, Remark 4.3]). Let (R,m, k) be a noetherian local ring with char(k) =
p, and A an R-algebra with mA 6= A. Assume that R→ A factors through an R-algebra S that is perfect
modulo a flat ideal. Let M be an R-module. If TorRj (A,M) = 0 for j � 0, then TorRj (k,M) = 0 for
j � 0.

Proof of Theorem 2.6. Apply Theorem 2.5 when the case:
• J =

√
mS =

√
xS, where x = x1, . . . , xn is a s.o.p. of R.

• d := n+ 1.
• U := A.

Note that if follows from lemma 1.9 that fdS(S/J) ≤ n+ 1 = d. □
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3. Applications

3.1. (Weakly) Proregular sequences. We refer to [Sch03] and [SS].
At the early times of local cohomology, Grothendieck proved that the local cohomology of a module

over a Noetherian ring may be computed with a Čech complex (see Theorem 2.2): In [AJL97, Lemma
(3.1.1)], Lipman et al. generalized the result Theorem 2.2 to the case of x a proregular sequence in
an arbitrary commutative ring. It turned out that this is not correct (pointed out by Schenzel), and
Lipman suggested the notion of a “weakly proregular sequence.” Schenzel proved that Čech cohomology
coincides with local cohomology if and only if the ideal is generated by a weakly proregular sequence,
see [Sch03, Theorem 3.2], which was originated by [AJL97] and [GM92]

Observation 3.1. Let R be a ring, and x = x1, . . . , xd a sequence in R. If x is an R-regular sequence,
then for each n ≥ 1, so is xn1 , . . . , x

n
d is again an R-regular sequence (see [Mat2, Theorem 16.1]) and so,

(xn1 , . . . , x
n
i−1) :R xni

(xn1 , . . . , x
n
i−1)

= 0.

Due to this observation, we see that proregular sequences, defined as the following, is indeed a gener-
alization of regular sequences.

Definition 3.2. Let R be a ring, and x = x1, . . . , xd a sequence in R.

(xm1 , . . . , x
m
i−1) :R xmi

(xm1 , . . . , x
m
i−1)

xm−n
i−−−−→

(xn1 , . . . , x
n
i−1) :R xni

(xn1 , . . . , x
n
i−1)

is zero, i.e.,
(xm1 , . . . , x

m
i−1) :R xmi ⊂ (xn1 , . . . , x

n
i−1) :R xm−n

i .

The following notion will be particularly important.

Definition 3.3 ([Gro, Definition, p. 23]). Let R be a ring. We say that an inverse system {Xn}n≥0 of
R-modules is prozero (or essentially zero, essentially null ) if for any n ≥ 0, there exists m ≥ n such that
the transition map Xm → Xn is zero.

If the inverse system {Xn}n≥0 is prozero, then lim←−n
Xn = 0. The converse is false (e.g., consider the

inverse system {pnZp}n≥0 of Zp-modules).

Definition 3.4. Let R be a ring, and x = x1, . . . , xd a sequence in R. We say that x is weakly proregular
if for any 1 ≤ i ≤ d, the inverse system {Hi(x

n
1 , . . . , x

n
d )}n≥0 is prozero.

Remark 3.5. (1) The following implications hold:

‘regular’ ‘proregular’ ‘weakly proregular’

The first implication is what we have seen. For the proof of the second implication, we refer to
[Sch03, Lemma 2.7], or [SS, Lemma A.2.3] for modules, or [Sch21, Theorem 3.4] for homological
approach.

(2) If R is noetherian, then any sequence x = x1, . . . , xd in R is proregular. To verify this, we
only have to remark that for a fixed integer n ≥ 1, the increasing sequence {(xn1 , . . . , xni−1 :R
xm−n
i }m≥n of ideals of R is stationary.

Example 3.6. For a length one sequence x, we can see that the following conditions are equivalent.
(1) x is poregular.
(2) x is weakly proregular.
(3) The increasing sequence 0 :R x ⊂ 0 :R x2 ⊂ 0 :R x3 ⊂ · · · is stationary.
(4) There exists an integer n ≥ 1 such that xnR = 0.

When these conditions are satisfied, we also say that R is of xR-bounded torsion.

Example 3.7. Let R :=
∏

n>0 Z/2nZ, x := (2, 2, . . .) ∈ R. Then

(1) x is neither weakly proregular nor proregular: givenm > 0, a := (
︷︸︸︷
[ 0, . . . , 0]m, 1, 1, . . .) satisfies

axm+1 = 0 but axm 6= 0, hence 0 :S x
m ⊊ 0 :S x

m+1. Thus S is not of bounded xS-torsion.
(2) x, 1 is not pro-regular (by (1)).
(3) 1, x is pro-regular (hence weakly pro-regular): Since 0 :S 1 = 0 :S 12 = · · ·S, it follows that S is

of bounded 1S-torsion. For n > 0, 1nS :S x
n = S = 1nS :S x

n−n, and so we may take m := n.
By (2) and (3), a pre-regular sequence is not permutable without any additional assumption.
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We care about these notions because of the following observation.

Lemma 3.8 ([BIM, Lemma 4.10]). Let R be a noetherian ring, and S an R-algebra. If an ideal a ⊂ R is
generated, up to radical, by a sequence whose image in S is weakly proregular, then Hi

a(I) = 0 for i ≥ 1
and any injective S-module I.

Proof. By hypothesis, there exists a sequence x in R such that
√

(x) =
√
a and xS, the image of the

sequence x in S, is weakly proregular. Then we have:

Hi
a(I)

Pf. of [BH, 3.5.6]
= Hi(Č(x)⊗R I) = Hi((Č(x)⊗R S)⊗S I) = Hi(Č(xS)⊗S I)

[Sch03, Thm. 3.2]
= 0.

□
3.2. Application to R+ and Rperf . Given a domain R, its absolute integral closure R+ is the its
integral closure in an algebraic closure of it field of fractions. When R is of positive characteristic, R+

contains a subalgebra isomorphic to Rperf .

When R has mixed characteristic, with residual characteristic p, the ideal (p1/p
∞
)R+ is flat, and the

quotient ring R+/(p1/p
∞
)R+ is of characteristic p and perfect.

Their most important features for the aim are the following.

Proposition 3.9 ([BIM, Proposition 4.11]). Let R be an excellent local domain, and x a system of
parameters of R.

(1) If R has positive characteristic, then x is weakly proregular in Rperf and in R+.
(2) If R has mixed characteristic and dimR ≤ 3, then x is weakly proregular in R+.

Sketch. The assertions for R+ hold if R+ is a balanced big Cohen-Macaulay algebra (since a regular
sequence is a weakly proregular sequence). This is indeed the case where:

• R has positive characteristic, as proved by Hochster and Huneke [HH92, Theorem 1.1].
• R has mixed characteristic and dimR ≤ 2, as well-known.

It remains to the case where R has mixed characteristic and dimR = 3. But, even in this case, we have
a useful result of by Heitmann’s [Hei05, Theorem 0.1] (see also [Hei02]), and we can prove the assertion.

We omit the proof for Rperf . □
Corollary 3.10 ([BIM, Corollary 4.12]). Let (R,m, k) be an excellent local domain, and (−)∨ :=
HomR(−, ER(k)) the Matlis dual.

(1) If R has positive characteristic, then Hi
m((R

+)∨) = Hi
m((Rperf)

∨) = 0 for i ≥ 1.
(2) If R has mixed characteristic and dimR ≤ 3, then Hi

m((R
+)∨) = 0 for i ≥ 1.

Proof. By adjunction, the R+-module (R+)∨ and the Rperf -module (Rperf)
∨ are injective. Thus the

desired result follows from Proposition 3.9 and lemma 3.8. □
Theorem 3.11 ([BIM, Theorem 4.13]). Let (R,m, k) be an excellent local domain. Then R is regular if
any one of the following conditions.

(1) R has positive characteristic and TorRi (Rperf , k) = 0 for some i ≥ 1;

(2) R has positive characteristic and TorRi (R
+, k) = 0 for some i ≥ 1;

(3) R has mixed characteristic, dimR ≤ 3, and TorRi (R
+, k) = 0 for some i ≥ 1.

Remark 3.12. Aberbach and Li [AL08, Corollary 3.5] have proved parts (1) and (2), using different
methods.

Proof of Theorem 3.11. In all cases, it follows from Corollary Corollary 3.10 and Fact 2.4 that TorRj (R
+, k),

respectively, TorRj (Rperf , k), is zero for each j ≥ i. When R has positive characteristic, R+ contains Rperf ;

in mixed characteristic, R+ is perfect modulo a flat ideal. Therefore, in either case Theorem 2.6 implies
TorRj (k, k) = 0 for j � 0 as desired. □

Here is a question suggested by part (3) above: If (R,m, k) is a noetherian local domain of characteristic

0 and TorRi (R
+, k) = 0 for some i ≥ 1, then is R regular?
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