Frobenius maps on mixed characteristic rings via prismatic cohomology

Ryo ISHIZUKA (Tokyo Institute of Technology)

L-functions and Motives in Niseko

September, 2024

Kunz's Theorem (Kunz)¹

Let R be a Noetherian local ring of characteristic p > 0. TFAE.

- 1. R is regular.
- 2. The Frobenius map $F \colon R \to R$ is (faithfully) flat.
- 3. The canonical map $R \to R_{perf} := \operatorname{colim}_F R$ is (faithfully) flat.

Can we generalize Kunz's theorem to mixed characteristic rings?

Observation

- ▶ R_{perf} is perfect of characteristic *p*, namely, the Frobenius map $F_{R_{\text{perf}}}$ is an isomorphism.
- A ring A of characteristic p is perfectoid if and only if A is perfect.

¹American Journal of Mathematics, 91 (1969) 772–784.

p-adic Kunz's Theorem (Bhatt–Iyengar–Ma)²

Let R be a Noetherian ring with $p \in Jac(R)$. TFAE.

- 1. R is regular.
- 2. There exists a perfectoid ring A and a faithfully flat map $R \rightarrow A$.

Definition

A *p*-adically complete ring A is *perfectoid* if

- 1. there exists an element $\pi \in A$ such that $p \in \pi^p A$,
- 2. the Frobenius map $F: A/pA \rightarrow A/pA$ is surjective, and
- 3. the kernel ker(θ) of the Fontaine's theta map $\theta \colon W(A^{\flat}) \to A$ is principal.

If A is p-torsion-free and satisfies (1) and (2), then (3) is equivalent to that $A/\pi A \xrightarrow{a \mapsto a^p} A/\pi^p A$ is an isomorphism.

²Communications in Algebra, 47(6) (2019) 2367–2383.

What is the "mixed characteristic Frobenius map"?

What about the "mixed characteristic Frobenius map"?

Observation (cf. Bhatt)³

Let (R, \mathfrak{m}, k) be a Noetherian local ring with $\operatorname{char}(k) = p > 0$ (and some extra conditions). The "mixed characteristic Frobenius map" is the Frobenius lift of the *prismatic cohomology* $\mathbb{A}_{R/A}$ of $A/I \to R$ for some *prism* (A, I).

Definition

A (bounded) prism (A, I) is a pair of a δ -ring A and a locally free of rank 1 ideal I of A such that

- 1. A is (p, I)-adically complete,
- 2. $p \in I + \varphi_A(I)A$, and

3. A/I has bounded p^{∞} -torsion, i.e., $A/I[p^{\infty}] = A/I[p^N]$ for some $N \ge 0$.

³Proceedings of the International Congress of Mathematicians, 2, (2022), 712–748.

Prisms and Prismatic Cohomology

We briefly recall the notion of prismatic cohomology.

Prismatic Cohomology (Bhatt-Scholze)⁴

Let (A, I) be a bounded prism (e.g., $(\mathbb{Z}_p[|T_1, \ldots, T_n|], (p-f)))$. For a given (animated) A/I-algebra $A/I \to R$, we can define the *prismatic* cohomology $\mathbb{Z}_{R/A}$ of $A/I \to R$. Naively, this is a commutative algebra object in the derived category D(A) of A-modules:

$$\mathbb{A}_{R/A} \in D(A).$$

Moreover, $\mathbb{A}_{R/A}$ is equipped with a φ_A -semilinear endomorphism $\varphi \colon \mathbb{A}_{R/A} \to \mathbb{A}_{R/A}$, which is called the *Frobenius lift* of $\mathbb{A}_{R/A}$.

An important property of prismatic cohomology is that it specializes to a lot of integral *p*-adic cohomology theories such as crystalline cohomology, de Rham cohomology, *p*-adic étale cohomology, and so on.

⁴Annals of Mathematics, 196(3) (2022) 1135–1275.

R. Ishizuka (TokyoTech)

Construction

Let (A, I) be a bounded prism and let $J \coloneqq (I, f_1, \dots, f_r) \subseteq A$. We set

- 1. an A/I-algebra $R \coloneqq A/J$ and
- 2. an animated A/I-algebra $R^{an} := R^{an}(f_1, \dots, f_r) := (A/I) \otimes_{\mathbb{Z}[\underline{X}]}^L \mathbb{Z}$, where $A/I \xleftarrow{f_i \leftrightarrow X_i} \mathbb{Z}[\underline{X}] = \mathbb{Z}[X_1, \dots, X_r] \xrightarrow{X_i \mapsto 0} \mathbb{Z}$.

If f_1, \ldots, f_r is a regular sequence on A/I, then $R^{an} \xrightarrow{\cong} R$.

Let (R, \mathfrak{m}, k) be a complete Noetherian local ring and let $n := \operatorname{emdim}(R)$. By Cohen's structure theorem, we can take a bounded prism $(A, I) = (\mathbb{Z}_p[|T_1, \ldots, T_n|], (p - f))$ for some $f \in (T_1, \ldots, T_n)$ and a surjection $A/I \xrightarrow{\pi} R$. Fix a finite generator f_1, \ldots, f_r of ker (π) and take $R^{an} = R^{an}(f_1, \ldots, f_r)$.

Prismatic Kunz's Theorem (Ishizuka–Nakazato)⁵

Under the above setting, TFAE.

- 1. *R* is regular.
- 2. The Frobenius lift $\varphi \colon \mathbb{A}_{R^{an}/A} \to \mathbb{A}_{R^{an}/A}$ is faithfully flat.

Remark

- If R is complete intersection, we can assume that f₁,..., f_r is a regular sequence. In this case R is regular if and only if φ: Δ_{R/A} → Δ_{R/A} is faithfully flat.
- The proof uses the *p*-adic Kunz's theorem by Bhatt-Iyengar-Ma and the following lemma.

⁵preprint, arXiv:2402.06207.

Essential Lemma

To prove the main theorem, we need the following general lemma.

Lemma (Ishizuka–Nakazato)

Let (A, I) be a bounded prism and let $J := (I, f_1, \ldots, f_r) \subseteq A$. Then $R^{an} \to \overline{\mathbb{A}}_{R^{an}/A} := \mathbb{A}_{R^{an}/A} \otimes^L_A (A/I)$ is *p*-completely faithfully flat, namely, $R/pR \otimes^L_{R^{an}} \overline{\mathbb{A}}_{R^{an}/A}$ is concentrated in degree 0 and is a faithfully flat R/pR-module.

If R is Noetherian, $R \to \pi_0(\overline{\mathbb{A}}_{R^{an}/A})$ is faithfully flat.

Sketch (main theorem)

If $\varphi \colon \mathbb{A}_{R^{an}/A} \to \mathbb{A}_{R^{an}/A}$ is faithfully flat, then the composition

$$R^{an} o \overline{\mathbb{A}}_{R^{an}/A} o \overline{\mathbb{A}}_{R^{an}/A,\infty} \coloneqq ((\operatorname{colim}_{\varphi} \mathbb{A}_{R^{an}/A}) \otimes^{L}_{A} A/I)^{\wedge_{p}}$$

is *p*-completely faithfully flat. Since $\mathbb{A}_{R^{an}/A}$ is connective, the target is concentrated in degree 0. By *p*-adic Kunz's theorem, *R* is regular.

R. Ishizuka (TokyoTech)