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RYO ISHIZUKA

Abstract. This is a note for the 18th summer school on Commutative algebra at the
Tokyo Institute of Technology to introduce some research about absolute integral closure.
The conference webpage is Here (in Japanese).

Of course, everything written here is not the result of the authorship, and any errors
are the responsibility of the author. If you find a mistake, please let me know.
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1. Introduction

Definition 1.1. Let R be a domain and let K be the fraction field of R. Fix an algebraic
closure K of K. The absolute integral closure R+ is the integral closure of R in K.

Theorem 1.2 ([HH92; HL07]). Let (R,m) be an excellent Noetherian local domain of
characteristic p. Then H i

m(R+) vanishes for i < dim(R) and R+ is a big Cohen-Macaulay
R-algebra. In [Quy16], this is true for any Noetherian local domain of characteristic p

which is an image of a Cohen-Macaulay local ring.

Theorem 1.3 ([Bha21, §5]). Let (R,m) be an excellent p-Zariskian Noetherian local do-
main. Then we have the following:

(1) H i
m(R+/(p)) vanishes for i < dim(R/(p)).

(2) H i
m(R+) vanishes for i < dim(R).

(3) R̂+ is a big Cohen-Macaulay R-algebra.
(4) If R is splinter, R is CM.
(5) If R is regular, R→ R̂+ is faithfully flat.
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2. Cohen-Macaulayness of Absolute Integral Closure

2.1. Ind-CM objects.
DefIndCM

Definition 2.1 (Ind-CM objects [Bha21, Definition 2.10]). For a finite dimensional scheme
X, an ind-object {Mk} in Dqc(X) is ind-CM if the following holds;

• For all x ∈ X, the ind-object {H i
x(Mk,x)} of OX,x-modules is 0 for any i <

dim(OX,x).
Ind-CMInd-FiniteNoetherian

Lemma 2.2 (Ind-CM object on non-closed points is ind-(finite length) object: a Noether-
ian case [Bha21, Lemma 2.16] and [HL07, Theorem 2.1]). Let X be a biequidimensional
Noetherian scheme that admits a normalized dualizing complex ω•

X . Let {Mk} be an ind-
object in Db

coh(X) which is ind-CM after restriction to any non-closed point of X.1

Then, for each closed point x ∈ X and each i < dim(OX,x), the ind-object {H i
x(Mk,x)}

of OX,x-modules is isomorphic to an ind-object {I(i,x)
k }, where every I(i,x)

k is finite length
OX,x-module contained in some H i

x(Mk,x).2

2.2. Positive chcaracteristic case. The following lemma is called “equational lemma”
in [HL07].

EquationalLemCharp
Lemma 2.3 ([HL07, Lemma 2.2]). Let R be a Noetherian domain of positive charac-
teristic p and let I be an ideal of R. Let K be the fraction field of R and let K be the
algebraic closure of K. Fix an element α ∈ H i

I(R). Because of char(R) = p, H i
I(R)

has the Frobenius action F and we denote F e(α) by αpe. We assume that the elements
α, αp, αp2

, . . . ,∈ H i
I(R) belong to a finitely generated R-submodule of H i

I(R).
Then there exists a finite extension R ↪→ S contained in K such that H i

I(R) → H i
I(S)

induced by the extension sends α to 0.

By using Lemma 2.2 and Lemma 2.3, we can show the following:

Theorem 2.4 ([HL07, Theorem 2.1]). Let (R,m) be a Noetherian local domain of char-
acteristic p and let K be the fraction field of R with the algebraic closure K. Assume
that R has a dualizing complex. Then for any finite R-algebra R′ contained in K, there
exist a finite extension R′ ↪→ S contained in K such that, for any i < dim(R), the map
H i

m(R′)→ H i
m(S) induced by the extension is the 0 map.

More precisely, the ind-object {S}R⊆S⊆R+ where S runs through every finite R-algebra
contained in R+ is ind-CM in the sense of Definition 2.1. That is, for every prime ideal
p ⊂ R, the ind-object {H i

p(Sp)} of Rp-modules is 0 for any i < dim(Rp).
1That is, for any non-closed point x ∈ X, the ind-object {Hi

x(Mk,x)} of OX,x-modules is 0 for i <

dim(OX,x)
2More precisely, for any Hi

x(Mk,x), there exists k′ ≥ k such that the transition map factors through
Hi

x(Mk,x) ↠ I(i,x)
k ↪→ Hi

x(Mk′,x).
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Proof. We use induction on d := dim(R). If d = 0, R is a field and thus has nothing to
prove. We assume that d > 0 and the ind-CM property for all smaller dimensions.

Applying Lemma 2.2 (3) for X = Spec(R) and {Mk} = {S}R⊆S⊆R+ , we can show that,
for each i < dim(R) = d, the ind-object {H i

m(S)} of R-modules is isomorphic to an ind-
object {I(i)} of R-modules such that I(i) is finite length R-module. More precisely, for
each S, there exists a finite extension S ↪→ S′ contained in R+ such that H i

m(S)→ H i
m(S′)

factors through H i
m(S) ↠ I(i) ↪→ H i

m(S′) for some I(i).
Let α1, . . . , αs ∈ H i

m(S′) be a generator of I(i). Since the Frobenius maps over S and S′

are compatible with the extension S ↪→ S′, the Frobenius action on each local cohomology
commutes with the canonical map H i

m(S)→ H i
m(S′). Then the set of elements {αpj

i | 1 ≤
i ≤ s, 0 ≤ j} ⊆ H i

m(S′) is contained in I(i). By the above equational lemma Lemma 2.3,
there exists a finite extension S′ ↪→ S′′ contained in R+ such that H i

m(S′)→ H i
m(S′′) sends

αi to 0. This implies that H i
m(S)→ H i

m(S′′) is the 0 map and we finish the proof. □
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3. Proof strategy

3.1. Notations. [[Bha21, §3.1 and Notation 4.9]] NotationXPn

In this section, we fix the following notations.

(a) Let V be a p-torsion-free p-henselian excellent DVR with residue field k and let V

is the absolute integral closure of V .
(b) Fix an integer n ≥ 1. Let X := Pn

V
be the n-dimensional projective space over V .

We use this X in the rest of this section.
(c) For X = Pn

V
, we take the normalization π : X+ → X of X in K in the sense of

[GW10, Definition 12.42].
(d) As in the last paragraph of [Bha21, Notation 4.9], for quasi-compact and quasi-

separated maps f : Y → X, (for example, f is a proper), we sometimes regard
any sheaves on Y as sheaves on X via derived pushforward, that is, F ∈ Dqc(X)
denotes Rf∗F for any F ∈ Dqc(Y ) (see [Sta, 08D5]). DerivedPushforward

3.2. Alterations over X.
FiniteProper

Definition 3.1 (Finite and proper map of schemes [Sta, 01WG] and [Sta, 01W1], or
[GW10, Proposition and Definition 12.9] and [GW10, Definition 12.55]). Let f : X ′ → X

be a map of schemes. We say that f is finite if f is affine and if, for every affine open
subset Spec(B) = U ⊆ X with inverse image Spec(A) = f−1(U) ⊆ X ′, the associated ring
map B → A is finite.

We say that f is proper if f is separated, finite type, and universally closed.
GenericallyFinite

Definition 3.2 (Generically finite map of schemes [Sta, 02NX]). Let X ′ and X be integral
schemes and let K(X ′) and K(X) be function fields of X ′ and X each other. Let f : X ′ →
X be locally of finite type map of schemes. Assume that f is dominant.

We say that f is generically finite if the following equivalent conditions are satisfied:

(1) The extension K(X) ⊆ K(X ′) has transcendence degree 0.
(2) The extension K(X) ⊆ K(X ′) is a finite extension.
(3) There exists a non-empty affine open subset U ′ ⊆ X ′ and U ⊆ X such that

f(U ′) ⊆ X and the restriction map f |U ′ : U ′ → U is finite.
(4) The fiber f−1(η) ⊆ U ′ of the unique generic point η of X consists only of the

unique generic point of X ′.

If moreover f is separated or if f is quasi-compact, then these are also equivalent to

(1) there exists a non-empty affine open subset U ⊆ X such that f−1(U)→ U is finite.
(2) There exists a non-empty open subset U ⊆ X such that f−1(U)→ U is finite.

Alteration

https://stacks.math.columbia.edu/tag/08D5
https://stacks.math.columbia.edu/tag/01WG
https://stacks.math.columbia.edu/tag/01W1
https://stacks.math.columbia.edu/tag/02NX
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Definition 3.3 (Alterations [de 96, 2.20] and [Sta, 0AB0]). Let X be an integral scheme.
An alteration X ′ of X is an integral scheme X ′ together with a map of schemes f : X ′ → X

which is a proper dominant and generically finite.
Since every proper map is (universally) closed, alterations are actually surjective.

AlterationCategory
Definition 3.4 (Alterations over X = Pn

V
[Bha21, Definition 4.10]). Fix a canonical map

of schemes Spec(K)→ Spec(K)→ X. We use the following categories.

(1) Let PX be the category of pairs

(3.1) (fY : Y → X, ηY : Spec(K)→ Y ),

where Y is a proper integral V -scheme, fY is an alteration, and ηY is a map of
X-schemes. For conveniense, we will simply write (fY : Y → X) ∈ PX or even
Y ∈ PX . The map f : Y ′ → Y of PX is the map of schemes f : Y ′ → Y which has
natural commutativity.

(2) Let Pfin
X be the full subcategory spanned by those Y ∈ PX such that fY : Y → X

is finite (not only on some open subset). Since any finite map is proper and
generically finite, finite alteration maps are equivalent to finite surjective maps.

(3) Let Pss
X be the full subcategory sppaned by those Y ∈ PX such that the p-adic

completion Ŷ of Y , which is a p-adic formal V̂ = OC-scheme, is semistable in the
sense of [ČK19, §1.5].

CofinalProperty
Theorem 3.5 (Existence of semistable alterations by de Jong [Bha21, Theorem 4.15]).
The category Pss

X is cofinal in PX .
CofinalPX

Theorem 3.6 (Cofinarity of some objects [Bha21, Theorem 4.19]). We have the following
compatibility of some ind-objects. (Cofinality of finite maps and vanishing of differential
forms): The following natural maps of ind-objects in Dqc(Xp=0) are all isomorphisms and
they all have colimit OX+/p:

(3.2) {OY /p}
Y ∈Pfin

X

a−→ {OY /p}Y ∈PX

b←− {OY /p}Y ∈Pss/p
c−→ {∆log

Y /(p, d)}Y ∈Pss
X

where a and b are obtained by the tower of categories Pfin
X ⊆ PX ⊇ Pss

X and c is the
Hodge-Tate structure map OY /p→ ∆log

Y /(p, d).

3.3. Key lemmas. We use the following “equational lemma”.
EquationalLem

Lemma 3.7 (“Equational lemma” [Bha21, Lemma 4.32]). Let x ∈ X = Pn
V

be a closed
point and let i be an integer. Then the O[

X+-module H i
x(O[

X+) contains no nonzero Frobe-
nius stable finitely generated O[

X+-module.
ColimPrismSS

Lemma 3.8 ([Bha21, §4.2]). For X = Pn
V

, we have

colim
Y ∈Pss

X

∆log
Y /p ∼= O[

X+ .

https://stacks.math.columbia.edu/tag/0AB0
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3.4. (∗)CM condition.
starCMcond

Definition 3.9 ((∗)CM condition [Bha21, Definition 4.1]). Let (R,m) be an excellent
normal local domain. The (∗)CM condition or simply (∗)CM is the following condition
about (R,m):

There exists a finite extension3 R ↪→ S of domains such that, for any i < dim(R/(p)),
H i

m(R/(p))→ H i
m(S/(p)) is the 0 map. starCM

GeometricResult
Theorem 3.10 (The geometric result [Bha21, Theorem 4.2]). Let V be a p-henselian
p-torsion-free excellent DVR and let Y be a flat normal V -scheme such that finite type
over V . Then, for any point y ∈ Yp=0, the local ring OY,y satisfies (∗)CM .

In particular, any essentially finitely generated normal local V -algebra R satisfies (∗)CM .

Remark 3.11 (Proof strategy). To use “equational lemma” (see Lemma 3.7), we must
reduce to the case of O[

X+ , which is a colimit of prismatic complexes (see Lemma 3.8).

(1) (Mk) and Lemma 2.2 shows the finiteness of some image of {H i
x(OZ/p)} as in

Claim 3.17.
(2) By using Proposition 3.15, H i

x(∆log
Y /p) is dc-torsion up to semistable alteration,

precisely Claim 3.18
(3) By using Lemma 3.16, we show the finiteness of some image of {H i

x(∆log
Y /p)[dc]},

precisely Claim 3.19.
(4) Because of Lemma 3.8, H i

x(O[
X+) is 0 by using “equational lemma” Lemma 3.7

and the above two claim (Claim 3.18 and Claim 3.19).
(5) By Bockstein sequence we can show that H i−1

x (OX+/p) ∼= H i
x(O[

X+) = 0.
(6) Again by using Claim 3.17, we can prove Theorem 3.10.

3.5. A Reduction step.

Definition 3.12 ((Mn) and (Pn) conditions [Bha21, Definition 4.6]). For any integer
n ≥ 1, we define the following properties:

(Mn) For any p-henselian p-torsion-free excellent DVR V , any flat normal finite type
V -scheme Y , and any point y ∈ Yp=0 with dim(OY,y) = n + 14, the local ring OY,y

satisfies (∗)CM .
(Pn) For any p-henselian p-torison-free excellent DVR V , any closed point x ∈ Pn

V , and
any finite extension OPn

V ,x ↪→ R of normal domains with dim(R/(p)) = n, the
normal domain R satisfies (∗)CM , that is, there exists a finite extension R ↪→ S of
domains such that H i

x(R/(p))→ H i
x(S/(p)) is the 0 map for any i < dim(R/(p)) =

n.
3That is, S is an integral domain and R ↪→ S is a finite injective map of domains.
4That is, the local ring OY,y has relative dimension n over V
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Lemma 3.13 (Reduce to Pn
V [Bha21, Lemma 4.7]). Fix an integer n ≥ 1. Then the

following are equivalent:

(1) (Mk) holds true for all 1 ≤ k ≤ n.
(2) (Pk) holds true for all 1 ≤ k ≤ n.

That is, to prove the following Theorem 3.10, we can reduce to the case of X = Pn
V

(or its
finite normal extension).

Mk=Pk
Theorem 3.14 (The geometric result: strong form [Bha21, Theorem 4.27]). The equiva-
lent conditions (Mn) and (Pn) hold true for all n ≥ 1.

3.6. Some lemmas.
FactorsCohoCM

Proposition 3.15 ([Bha21, Proposition 4.22]). There exists an integer c = c(n) only
depending on n = dim(X) such that, for any Y ∈ Pss

X , there is a map f : Y ′ → Y in Pss
X

and K ∈ Dcomp,qc(X, ∆X/p) such that the following holds:

(1) Take the pullback f∗ : ∆log
Y /p→ ∆log

Y ′ /p. Then dcf∗ factors over K in Dcomp(Xp=0, Ainf/p),
that is, we have a following commutative diagram

∆log
Y /p ∆log

Y ′ /p

K ∆log
Y ′ /p

f∗

∃ ×dc

∃

in Dcomp(Xp=0, Ainf/p).
(2) The quotient K/d ∈ Dqc(Xp=0)5 is cohomologically CM, that is, RΓx((K/d)x) ∈

D
≥dim(OXp=0,x)(=n−dim({x}))(OXp=0,x) for any x ∈ Xp=0.

PassingOPrism
Lemma 3.16 (Passing OY to ∆Y [Bha21, Lemma 4.25]). Fix a closed point x ∈ X.
Assume that, for any Y ∈ Pss

X , there exists a map Y ′ → Y in Pss
X such that the map of

OXp=0,x-modules (defined in [Sta, 0A39])

(3.3) H i
x((RfY,∗OY )/p) −→ H i

x((RfY ′,∗OY ′)/p)

induced from the map of OX-algebras RfY,∗OY → RfY ′,∗OY ′ factors over a finitely pre-
sented V

[
/(d)-module for i < n.

Then, for any Y ∈ Pss
X and any integer c ≥ 1, there is a map Y ′′ → Y in Pss

X such that
the map of OX/(p)-modules
(3.4)

H i
x(∆log

Y /(p, dc)) := RiΓ∆
{x}(∆log

Y /(p, dc)) −→ RiΓ∆
{x}(∆log

Y ′′/(p, dc)) =: H i
x(∆log

Y ′′/(p, dc))

5By the definition of Dcomp,qc(X, ∆X/p) in Section 3.1, the derived quotient K/d is in the (usually
defined) cohomologically quasi-coherent derived category Dqc(Xp=0).

https://stacks.math.columbia.edu/tag/0A39
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induced from the map of ∆X-complexes ∆log
Y /p → ∆log

Y ′′/p factors over a finitely presented
V

[-module for i < n.

3.7. Sketch of proof.

Sketch of Proof of Theorem 3.14. We prove that (Pk) holds true for all 1 ≤ k ≤ n by
induction n. If n = 1, R is a normal ring of dimension 2. Then R is Cohen-Macaulay (for
example, by using Serre’s criteria), the 0-th local cohomology H0

x(R/(p)) is itself 0.
Assume that (Pk) (and hence (Mk) by Theorem 3.14) hold true for k < n and we show

that (Pn). Fix a closed point x ∈ Pn
V/(p), the special fibre of Pn

V over V . x is corresponding
to a closed point of Xp=0. We start the following reduction steps.

(1) (Reduction to V -algebra): It suffices to show that

for any Y ∈ Pss
X , there exists a map Y ′ → Y in Pss

X such that the induced map

H i
x(OY /p) −→ H i

x(OY ′/p)

is the 0 map for all i < n.

To prove this, we need the following claims.
ImageFPO

Claim 3.17. For any Z ∈ Pss
X , there exists a map Z ′ → Z in Pss

X such that the induced
map

H i
x(OZ/p) −→ H i

x(OZ′/p)

has image contained in a finitely presented V
[-module for all i < n.

Proof. Applying Lemma 2.2 under our assumptions (Mk) for all 1 ≤ k < n. □

By using Lemma 3.16, for any Y ∈ PssX and for any c ≥ 1, there exists a map Y ′ → Y

in Pss
X such that the induced map

H i
x(∆log

Y /(p, dc)) −→ H i
x(∆log

Y ′ /(p, dc))

has image contained in a finitely presented V
[-module.

ImageTorsion
Claim 3.18 (Image is bounded d-torsion [Bha21, Claim 4.28]). For any Y ∈ Pss

X , there
exists an integer c = c(X) ≥ 1 depending only on X and a map Y ′ → Y in Pss

X such that
the induced map

H i
x(∆log

Y /p) −→ H i
x(∆log

Y ′ /p)

has image annihilated by dc for all i < n + 1.

Proof. Under Claim 3.17, applying [Bha21, Lemma 4.25]. □
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ImageTorsionPartFG
Claim 3.19 ([Bha21, Claim 4.29]). For any c ≥ 1 and any Y ′ ∈ Pss

X , there exists a map
Y ′′ → Y ′ in Pss

X such that the induced map on dc-torsion submodule

H i
x(∆log

Y ′ /p)[dc] −→ H i
x(∆log

Y ′′/p)[dc]

has image contained in a finitely generated V
[-submodule of the tareget for all i < n + 1.

Proof. By Bockstein sequence, applying Theorem 3.6 and Claim 3.17. □

In particular, there exists an integer c ≥ 1 such that, for any Y ∈ Pss
X , there exist maps

Y ′′ → Y ′ → Y in Pss
X with the following commutative diagram:

H i
x(∆log

Y /p) H i
x(∆log

Y ′ /p) H i
x(∆log

Y ′′/p)

H i
x(∆log

Y ′ /p)[dc] H i
x(∆log

Y ′′/p)[dc]

(f.g. V
[-submodule)

∃

∃

for all i < n + 1.
Combining these claims, we can show that, for any Y ∈ Pss

X , the image of

H i
x(∆log

Y /p) −→ H i
x(O[

X+)

is finitely generated V
[-submodule for all i < n+1. By the “equational lemma” Lemma 3.7

above, this map is the 0 map. Taking the colimit over all Y ∈ Pss
X , then we have

H i
x(O[

X+) = 0

for all i < n + 1 by Lemma 3.8. The long exact sequence of the distinguished triangle

O[
X+

×p[

−−→ O[
X+ → O[

X+/p[ ∼= OX+/p
+1−−→

shows that
H i−1

x (OX+/p) ∼= H i
x(O[

X+) = 0

for all i < n + 1. Combining this vanishing with Claim 3.17 and Theorem 3.6, for any
Y ∈ Pfin

X , there exists a map Y ′ → Y in Pfin
X such that the induced map

H i
x(OY /p) −→ H i

x(OY ′/p)

is the 0 map for all i < n. □
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